

1 1IZii~~~ Ti1

a~~~~~~rter1y4search l:E~~~~~~~

”

(7tJi~eveloPment)r’echnic~aU~ej~~~
‘7’SPatial Data Manageaent Systen

r

_ _ _
LU Contract Period 1 December 1~ 1R ,I ~~~ Covered by Repor t: 28 Feb~~~~ •79J

Computer Corporation of America~
j j Th.~ views and conclusions in Report Authors: (.. 4’Christppher F./I~ero

this document are those of David ,i(ramlic)j .# -“7
the authors and should not Richa1d ~arlin, I
be interpreted as necessarily Mark /Priedell
representing the official Jerryftarrell
pol icies, express or implied ,

/ Research Divisionof the Advanced Research Computer Corporationi . Projects Agency , or the of AmericaUnited States Government.
• Sponsor: Defense Advanced

Research Projects Agency
Off ice of Cybernetics
Technology

ARPA Order Number: 3487

ARP A Contrac t Number :
(.ontract Period : P~~uLudk ! ~~~~~~~~~

30 Uovenbeç 1979

11
fl

~~~~~ 
(~~~•/

i~ y)~7



- _

SDMS Quarterly Technical Report Page — 1—
Table of Contents

Table of Contents

1.
1. INTRODUCTION . 1
1.1 Graphical Data Spaces 1

I. 1.2 Control of’ Detail 3
1.3 Imag e Planes 3
1.4 Ports 4
1.5 Graphical Displays of Symbolic Information 11

1. 1.6 integrity Maintenance 6
1.7 Overview 6

1 1 2. MOTION THROUGH THE G R A P H I C A L  DA TA SPACE 8
2.1 Motion Between I—Planes and between I—Spaces 9
2.2 Zooming 9
2.2.1 Introduction 9
2.2.2 Overview of Zoom image() 12
2.3 Goto 111
2.3.1 Overview 14
2.3.2 Establishing a Destination 111
2.3.3 Validating a Destination & Locating its Pixels 15
2.3.4 Allocating buffer space 16
2.3.5 Loading Buffers 18
2.3.6 Switching the Display 20
2.3.7 Cleanup after a Goto 20H 2.3.8 Special Processing for a Pop—Through 21
2.3.9 Failures and Cancellation s 23
2.3.10 ZOOM CYCLE 27

3. THE ICON MA NAGE R 29
3.1 Function 29
3. 2 De sign 30
3.2. 1 Hierarchy of Data 30
3 .2 .2 Database Format 

~~‘iC~D 0  32
3 .2.2.1 The I—Space File 33

H 3 .2.2.2 The Region File •• 33• 3 .2 .2 . 3  The Icon File 34
3 .2.2 .4  The Port File 37
3 .2.2.5 The Name File 38
3.2.3 Spatial Database Format :1_ ..—~—-~~ 39
3.2.4 Manipulation of the Database 41
3.2.4.1 I—Spaces 1 4 1
3 .2 .4 .2  Regions 43
3 .2.4 .3 Icons 43
3.2.4.4 Por t s  45H 3 .2.4 .5 Names • 46
3 .2.5 Findspace 47
14~ GRAPH ICAL VIEWS OF SYMBOLIC DATA 50

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
. • 

.___
~
••.•_•

~ ~~ T
____— ~- • ~~— .•-~ -•



___________ ~~~~~~~~~

SDMS Quarterly Technical Report Page — I i —
Table of’ Contents

11 .1 ASSOCIATIONS 51
4.1.1 The association map • 52
4.1.2 Implementation overview 514
4.2 DISPLAY COMMAND AND ERASE COMMAND 55

1. 4.3 GDS INTEGRITY MAINTENANCE 56
4.3.1 Impl ementation overview 58

Appendix A 60

Appendix 8 67
B .1 DO IMAGE Subroutines 67
..i.i Uo SCREEN() 67
8.1.2 SET DIMENSIONS() 69
8.1.3 DO~~BUF () 70
B.1.4 DO SBUF() 71
B.1.5 ZD~ SLBUF() 72
B.1..6 COPY DN(new map , tskip, lsktp) 73
B.1.7 COPY UP(new map, tskip, iskip) 714

• B.2 Zoom_ agenda sEates 75

References 78

• ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

~~•—.-~ ~~~~~—- ~~~~~~



• --~~

L SDMS Quarterly Technical Report Page — 1—
INTRODUCTION Section 1

1. INTRODUCTION

N
This fifth quarter of work on the design and implementa—

j tion of a prototype Spatial Data Management System (SDMS)

resulted in the addition of several new capabilities -whioh--

to the operational prototype . These capabilities prov ide:

(i’) a means of controlling the detail at which data is

presented~~~~~

(1) additional flexibility in the appearance of graphi-~
cal displays of symbolic data.

In addition , a mechanism for maintaining the correspon—

derice between symbolic and graphical forms of data was

1 designed and will be implemented during the coming two

quarters.

LI 1. 1 Graphical Data Spaces

11• LI
• The Spatial Data Management System (SDMS) provides the

user with a large electronic work space referred to as the

Graphical Data Space (GDS ) . The GDS is composed of one or

more flat surfaces called Information Spaces , or I—Spaces

upon which Information can be displayed. This information

ea:~ origi:~ate i: either graphical or symbolic form .[1



• •• -‘ • •

H SDI4S Quarterly Technical Report Page —2—
INTRODUCTION Section 1

• t i

I Graphical data is entered via an interactive “painting”
program which allows the user to define shapes , colors ,

and text .  Symbolic data is fetched from a relational

database management system and used to generate icons

which are graphical representations of’ entities in the

I symbolic database .

The user of an SDMS can view the data through a set of

color displays as shown in Figure 1. The leftmost of the

three monitors shows the current I—Space in its entirety.

This display serves as a world view .~~2 for helping the

user f ind his way around the data.  In the photograph , the

user is examiling a database of ships which originated as

symbolic data in a relational database management system .

The main display in the center of the configuration shows

i i  a magnified view of the I—S pace. The portion of the I—

Space currently being magnified is shown as a highlighted

rectangle on the world view map. By pressing on a joy

U 
stick (visible in the user ’s left hand in Figure 1), this

highlighted rectangle can be made to move across the I—

Space. To a user watching the main display, the e f fec t  is

that of moving in a plane parallel to the data surface.

I This motion can be used to see various parts of’ the data-

base .

ii

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


- .- --
.• .--- —-—.-•—,,- -•- - ---‘- • •

~~~
-
~~

• .----- -..-•-
~~

.------ • - .  —-• --_---• — .- • - - .  —--—-
~~~~~

•. • .- • • — — - •-— — •— . -- - —- . — • - - — .- -

SDMS Quarterly Technical Report Page —3—
INTRODUCTION Section 1

1.2 Control of Detail

During this quarter , the SDMS was augmented to permit the

user to move in a direction perpendicular to the data sur-

face. He can do this by twisting the joy stick , an action

which changes the magnification at which the data is

displayed , resulting in the zooming effect shown in Fig—

urea 2 and 3.

As the user continues to zoom the display, the system adds

more detail to the picture , as shown in Figur e 11. The

user can continue to move across the I—Space , examining it

at the new level of’ detail.

Ii
H 1.3 Image Planes

The addition of detail is implemented by storing the

graphical representat ion of the I—Space at several levels

of detai l . These storage structures , known as image

planes or i—planes are bit arrays which specify the color

at each point on the I—Space at a given magnification.

The program which allows the user to move through the I—
• Space adds more detail to the picture when the display is

zoomed by substituting a more detailed i—plane for a less

~

O

j

• - •

•

•
~

_

•}

~~ •~~~~~ • • ~~~~~~~~~~~~ - •— • — - - - -—--—-- - •— • • • • ~~~ -- . -~--—--- ~~ -—-----

I

SDMS Quarterly Technical Report Page ~14_
INTRODUCTION Section 1

1 detailed one .

• 1. 14 Ports

•

~ H

• The zooming motion is also used to control the movement

• between I—Space s . Special area s of an I—Space , called

ports can be designated as transit ion points between one

I—Space and another. When the user zooms in on a port ,

the I—Space assoc iated with that port becomes the current

one . Th is mechanism can be used to parti t ion the GDS into

I—Spaces created for specif ic databases. For example , as

user may create separate I— Spaces for ships , personnel

fi les , and correspondence. The relationships among ports ,

I—Spaces and i—planes is show n schematically in Figure 1 .1

1.5 Graphical Displays of Symbolic Information

The icons in the I—S pace of the preceding example were

derived from data in a symbolic database manag ement system
(I)LiM~3) . The iiiwmer in wli i ~h t h e appe at ’ w~ ’c of e acli leon

re f l ec t s i ts assoc ia ted symbolic data can be control led by

H •

~~~~ ~~~~~~~~~~~~~~~~ 
.
~~~~, --

I. ~~- — ~~~~ -~~
_ _~~~_~~~ • -~~ - •-~~~—--— ~~~•- - _~ .~~~~~~• . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • • __ • • •

1 . SDMS Quarterly Technical Report Page —5—
INTRODUCTION Section 1

• • Nesting of I—Spa ces Through Ports Figure 1.1

s p I~no 0

• ~~ } I.SPace

/ ‘ s PIane b

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
/, ‘ ‘

I ~~ I~ Space 1

/
I /
I — /

1 I Space 3

— I
I Space 4

I— ••— — 

- -

~~

- 
•~.A.



H 
SDMS Quarterly Technical Re port Page —6—• INTRODUCTION Section 1

the database administrator through a mechanism called the

icon class description language (ICDL). At the beginning

of’ this quarter , it was possible to define an icon ’s posi-

tion and to display tex t  along with i~ as a function of

the symbolic data.  ~uring this quarter , it became possi-

ble to similarly define the shape , size , and color of an

icon.

1.6 Integrity Maintenance

H i

An important aspect of the graphical display of symbolic

data is the faci l i ty for ensuring that the graphical

display continue s to reflect the symbolic data even after

the database has been updated . This mechanism has been

designed and will be implemented over the com ing two quar-

ters.

1. 7 Overv iew

Chapter 2 of this report describes the additions -to the

motion programs to allow for motion between i— plane3 and
I 

between I—Spaces.

/ - , El
r i .  

_ 

• •



• SDI~1S Quarterly Technical Report Page -.7—• INTRODUCTION • Section 1

• Ii • -

Chapter 3 describes the icon manager , the module which

- 
allocates space in a graphical dat,a space and maintains

H the databases necessary to move through it.

Chapter ~l presents the design of the integrity mainten —

tance module.

• Appendix A contains the descriptions of the currently

implemented statements of the icon class description

language.

Finally, Appendix B provides details of the motion pro—

grams introduced in  Section 2.

1’  -

I ’

- •



lu SDMS Quarterly Technical Report Page —8—
MOTION THROUGH THE GRAPHICAL DATA SPACE Section 2

• 2. MOTION THROUGH THE GRAPHICAL DATA SPACE

There are three types of motion which the user can employ

fcr controlling his view of the Graphical Data Space

(GDS): scrolling , the goto , and zooming.

Scrolling is the means by which the user traverses an I-’

Space , moving his viewing position in a plane parallel to

that I—Space . Scrolling was discussed in detail in the

previous quarterly report and will not be covered here

except to the extent that it is performed differently in

order to allow the other two forms of motion.

While scrolling allows the user to move continuously over

the data sur face , there are times when it is advantageous

to go directly from o~~ point to another , without viewing

the space in between. The goto provides the mechanism for

such motion. it is discussed in detail in Section 2.3.

Finally, zooming allows the user to control the magnifica-

tion of the view of the I—Space displayed on his CRT.

Zooming is discussed in Section 2.2 below.

__I___ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •— — - - _ • _• • • •



SDMS Quarterly Technical Re port Page ~9—
MOTION THROUGH THE GRAPHICAL DATA SPACE Section 2

2.1 Motion Between I—Planes and between I—Spaces

A goto can be performed either expl ic i t ly or implicitly.

An explicit goto is performed by the user typing in the

name of the destination I—Space and coordinates , or by

pointing to a location on the world view map.

• Implicit goto ’s are invoked by zooming in on a port , in

which case the icon m a n a g e r , described in Section 3,
• returns the destination information to the motion program

which then performs the goto implicitly (see Section

2.3.10).

__ 2.2 Zooming

2 .2 .1  Introduction

The process of zooming the picture is separate from the

work needed to replace one i—plane by a more detailed ver—

ston , or “popped” vie w , although some of the mechanism of’

zooming Is necessary for the smooth functioning of ~the I— - •

plane transitions. This section is restricted to how the

• 
- 

- - —- • - ---~ - L -  - ~~~~~ •



S • —‘- -_,-- • - •
~~-•

- - - - • --

• 
- SDMS Quarterly Technical Report Page — 10—

MOTION THROUGH THE GRAPHICAL DATA SPACE Section 2

II proper image is main tained on the screen and how the sup—

porting data is buffered in the display and in core.

Zooming only take s place when SDMS ’s motion system is in

H an acceptable state : the rectangles defining the screen

• 

- 

(s_ variables) , the loaded portion of’ the display ’s buffer

(si  ) , the full display buffer (sb _ ) , and the core

buffer (cb _ ) are properly nested and filled with valid

pixel data . This situation is illustrated in Figur e 2.1.

In this design , display scale factors are restricted to

• value s from 2 — 8 , inclusive.

Nesting of Data • Figur e 2 . 1

- ____________________ ~- - - -- resident on disk 
•

• resident in PDP— 1 1 memory(cb )
__________  

~ : entire Lexidata memory(sb )
I f Ill II liii ~~—‘-.—————.——— 

—

resident in Lex idata memory (sl )

H - 
visible on screen(s )

I __________________________

motion

H I —



SDMS Quarterly Technical Report Page — 11 —• MOTION THROUGH THE GRAPHICAL DATA SPACE Section .2

Zooming is initiated from the joystick loop: when a rota-

tion of the “Z” potentiometer on the joystick is noted ,

the current z speed is adjusted to reflect that change;

and in every cycle in which z speed is non—zero , the

• 
-• routine zoom_ image() is called . When the user reduces z

speed to zero or reverses the direction of zooming , the

routine zoorn clear() is called to ensure that all levels

of the motion system ’s description of SDMS are consistent

with the current display scale —— a n y  pre—staging that

may have been invoked in preparation for an expected zoom

• is canceled .

Zoom_ image has its own set of bounds and state variables

correspo nding to those in the interprocess shared data

area (common) which are manipul ated to effect changes in

scale; the new value s are calculated and stored in these

• private variables until it is assured that the zoom can

take place , and then copied from them into their

correspo nding public equivalents in common. These vari-

ables are named new_ xxx , where xxx indicates the particu—

lar item , such as six for the screen ’s left edge , sblen

for the number of pixels across the screen buffer , or

rows , for the number of tiles down the new tile map.

~
- -~~~~~~~~- • • -~~~~~~ -~~~~~~~ •— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ —— 

—
~ -—~~~~~~~ 

-
~~~~

--

1’•~~~
• -

•-•~ ,-,_-•----~- - - ~ .--~~
- ----•---—•-•- —-—

~~~~
,-••-•--— ••---—-•---- — ---•----• ------ •

~~
—---

~~
- —--• -- - - • - •---- ---------- •-- -

~~•----—---,-• ---- - - • - - --•- • ----- -- -,-•---- ---— - ----- -

SDMS Quarterly Technical Report Page —12- .
MOTION THROUGH THE GRAPHICAL DATA SPACE Section 2

2.2.2 Overview of’ Zoom_ image()

Zoom_ image is called from do_run , the main loop of the

navigator. It first calculates and validates the desired

new scale:

if zspeed > 0, new_ scale current.dscale + 1

else if’ zspeed < 0 , new_ scale current.dsca le — 1

if new_ scale < 2, goto previous iplane (currently a no—op);

else if new_ scale > 8, goto next iplane (again no—op);

else the rest of this:

Call zdo screen () to calculate the new values for the

actual display, and set them if possible. This may fail ,

leaving the display unchanged , if’ in zooming out , the

• - current sl bounds are not big enough to hold the expanded

screen . Any other failur e is an error .

If outbound and zdo_ screeri succeeded , decrement new scale

by 1; this allows preparation of the next buffer so the

next zoom can take place when scheduled .

Call set dimension () to calculate the dimensions of all

the rectangles , as well selecting the next tile map ; it

sets the - 14 remai ning new variables (lx & ty for sb and cb)

to the value s of their current counterparts.

—- 
• ~~~~~~

• ~~~~~~~~~ -

_________________________________________________ 
~~~~~~~~~~~~~~~~~ _________


F — - :--- • _ _ _ _ • • __ _•_ •_ ‘•
~

____•_ ‘_ •

~~~

•__ • • • • • - • --•---.-—----•----,• --- ---‘-------- -- • • —•-‘•-,—
~

• - -  — --- --— --- ---- _ _ _ ___ _ __ __
— - - - _ _ ___

-‘-, ~~-•-
--—-—-- —‘

• ~~. SDMS Quarterly Technical Report Page — 13—
MOTION THROUGH THE GRAPHICAL DATA SPACE Section 2• I ii

Ii 
If inbound , call zdo_ sbuf() to calculate the shrunken

bounds for the new screen buffer. Then call zdo cbuf () to

H shrink the core buffer around It. Otherwi se (outbound ) ,

call zdo_cbuf first , to keep rectangles nested . In this

case , zdo_cbuf may fail , because it cannot obtain suffi—

cient buffer space for the expanded core buffer . If this

happens , zoom_ image fails (returns without modifiyi ng any

of the buffer variables). If it succeeds , zdo_ sbuf is

then called to expand the screen buffer into the n e w l y

opened space.

In either direction , zdo_ slbuf adjusts the bounds of the

loaded portion of the screen buffer to be consistent with

the new sb bounds ; if there is unloaded space , it queues

feed requests to load it , and then move to move the

al_ bounds out to meet the sb_bounds.

All the new variables are copied over into their

correspondents in common.

As long as there are feed requests outstandi ng , do_feed()

is called to process them .

Zoom_ image returns to do_run .

The subroutines are discussed in more detail in Appendix

13. 
• •

1_ i
11 - 

•

_ 
• • . ..~~~~~~~~~~~~~~ . •• • . . • • _ ---- • • • 

~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•
~~
-

~
••— •-

• ------.--~~~~ - - - --—.---- -. •••-- ~- — •--••---------

SDMS Quarterly Technical Report • Page _ 1Z~..MOTION THROUGH THE GRAPHICAL DATA SPACE Section 2

2.3

2.3.1 Overview

• In order to go to to a new location in SDMS , we must

1. establish the destination precisely ;

2. validate the destination and locate its graphical

information;
-

3. assign buffer space in core and the display memory

for it;

~4. transfe r appropriate data from disk to core and core

to display;

5. reset the display and SDMS’ internal status to

reflect the new scene; and

6. release old buffers and flush the old state descrip—

tors.

2.3.2 Establishing a Destination

• When SDMS first starts up, it begins with a wire d—in goto

I I to the m i d d l e of the f i rst i— plane 01’ the 0th l~ Space.

Thereafter , gatos are performed at the request of the

Li
I--i

-

_ _ - %~~,• - • - • -

•
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~ __________________



F-—---- • -
~

--- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Ill
, - •

-

• SDMS Quarterly Technical Report Page -‘15—
MOTION THROUGH THE GRAPHICAL DATA SPACE Section 2

user , who is prompted for a description of the destina-

tion. Zoom s are targeted at the current position in an

Li adjacent i—plane , as long as such exists. When no adja-

cent i—plane exists , a request to the icon manager results

in a pair of destination descriptors being filled in Corn—

mon , one for above and one below. These are the means by

which a destination is obtained .

The information required for a destination consists of:

a. the I—Space —— given by a 16—bit I—Space Id

b. t h e coordinates within the I—Space —— universal

coordinates of the top left corne~- , as floats

c. relative i—plane in the I—Space —— an m t index in

the range 0 — 15

d . display scale to arrive at —— an m t value from 2 to

8.

2.3.3 Validating a Destination & Locating its Pixels

Validating a destination involves locating its pixels ; if

the process cannot be completed successfully, the destina—

tion is riot valid . The first step is to locate the I—

~~ p;Ii~~~’ ~t c~;’ ’ , I ~t r , wit ich eouta I its access cotitrol iuTorrna—

t i o n , the actual Ldent ifiers 1’or the constituent i—planes ,

U

• • • - -.-.‘~~~~-—-.--•-~~-- •.‘~~~ - - , — -

- — -

~~~~~~~

- —-—•-, -- —C-- —— ~~~~ — ~~~~~~~~~ ~~~~SA~_



r _ _ _  _ _ _

ii SDMS Quarterly Technical Report Page — 16—
MOTION THROUGH THE GRAPHICAL DATA SPACE Section 2

and various other information. Descriptors are fixed—

length records in a file , indexed by their identifiers so

L they may be read directly. If a descriptor exists for the

desired I—Space and the access controls contained in it

allow access by the current user , the i—plane Id is

retrieved for the desired level . If this exists , it is

used as art index into a similarly— structured files of i—

plane descriptors , and the corresponding record is read .

This contains information on the disk location and encod-

ing of the i—plane ’s pixels , as well as its dimension s and

display characteristics. Pixels for - an i—plan e are

arranged contiguously on the disk in “tiles ” as described

in IHEROT et al.) and their address can be computed from

their coordinates and the information in the i—plane

descriptor.

2.3. 11 Allocating buffer space

Once the existence of the destination is guaranteed , the

variou s areas correspo nding to the screen itself , the sur-

rounding frame buffer , and its surrounding core buffe r ,

must be defined and allocated . The screen ’s dimensions

• are calculated according to the indicated display scale , -

[] and this rectangle is then positioned extending from the

- I I

~

•
. 

••



---- -

SDMS Quarterly Technical Report Page —17-.
MOTION THROUGH THE GRAPHICAL DATA SPACE Section 2

desired upper left corner . It may be adjusted slightly to

ensure that the screen lies entirely within the i—plane.

Aroun d the sc reen ’s rectan gle is positioned a screen

buffe r , again with a size computed fr om the scale , and

position depending on the i—plane dimensions and destina-

ti on coor di nates.  Farthe r out , a larger rectangle is

def ined for the core buffe r , sim ilarly constrained as to

size and position. Each of these rectangles is defined in

terms of pixels ; that is , it extends over the defined

area of the i—plane , w ithout reference to where in core or

the display buffer those pixels are stored .

An additional complication is added here by the fact that

a mov ing from one I—Space to another, implies replacing

the navi gational aid ’s d i s p l a y ,  as well as the scene on

the mai l display. This may cause difficulties for a zoom

leading to a pop—through: If the direction of motion is

down (inward) , the navigat ional a id ’s buffers will be

smaller than the new display ’s, and the allocation process

described next may proceed without consideration of’ the

ieeds of the nay aid . But for backing out of an I—Space ,

the nay aid will generally require more space than is

ava i la b le , and the zoom—po p sequence must be suspended

unt il it may be executed as a simple goto .

Buffer space ii the display is calculated by line3 outside •

those current ly  committed to the current view. Even

- ~~~~~~~~~ ~
- 

~~~~


SDMS Quarterly Technical Report Page — 18--
MOTION THROUGH THE GRAPHICAL DATA SPACE Section 2

though large portions of each line used in the current

view may not be committed to it , they cannot be allocated

to to the new view , because sequential addresses will pass

into the beginning of the following line before reaching

its free area , thereby destroying information in the

current scene. The wraparound nature of addressing in

frame buffer does allow lines to be assigned on both sides

vertically of a scene which resides in the middle of the

buffer.

Buffer space in core is allocated in tiles of 8K by te s

each; these are located in the large core buffer , and

managed by a routine which arbitrates request s from the

navigator , picture construction , nay aid , and the inter-

face routines to the display.

2.3.5 Loading Buffers

Assuming buffers are defined and allocated successfully,

the process of putting up the new picture begins. This

actually may involve putting up two pictures , since a

change in I—Space will involve displaying a new naviga—

tional aid , as well as a main display. The navaid uses

buffers temporarily, to move data to the screen , but once

• - - - - —“- - •--- .—---~ — —-- —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~



-~~~~~-- - -- --, • _---,- . _ ---~--,------—, “---- ~~~~~~~~~ -- _- - ----~~- • - - -  --— _____-w,-- -

17
SDMS Quarterly Technical Re port Page — 19—
MOTION THROUGH THE GRAPHICAL DATA SPACE Section 2

displayed , does not update it , and so may release its

buffers to the main display process.

Data is transferred from disk to core , and from core to

• the display, using exactly the same mechanisms as for

scrolling . That is , a request is sent to the diskio pro—

cess indicating a desired tile and the core buffer in

which to store it , in addition to the status flag in which

to mark its completion. The fact that this buffer may be

committed to a view in preparation rather than the current

• one is completely transparent to these routines. From

core to the display, areas correspo nding to rectangles in

the i—plane are broken into subareas restricted to a sin-

gle tile; a reqoest to feed each of these is formatted

and dropped in the queue . At the end of such a sequence

of feed requests , another request moves the appropriate

bound (s) to indicate that that portion of the display

buffer is now loaded .

In performing any of the versions of a goto , the feeds are

broke n into two parts: the first just covers the area

which will, be displayed on the screen , after which the

display may be switched to actually show that scene. The

remainder of the display buffer (the margins which support

smooth scrolling) may be fed after the switch is mad e ,

although no scrolling is possible until they have been

com pleted . This distinction allows the scene to be 

_ _

• - 
~~~~ i ~~~~~~~~ ~~~~~~~~~~~ . .. ‘ ~~~~~~~~~


• .
SDMS Quarterly Technical Report Page —20—

• MOTION THROUGH THE GRAPHICAL UATA SPACE Section 2

changed once 70% of the display buffer has been filled

with the new scene.

2.3.6 Switching the Display

All the state information referring to the status of the

display, location of buffers , and their state , is kept in

duplicate —— one copy for the current scene , and one for

any that may be in preparation. The latter area is used

for collecting all information in preparation for a goto

(of whichever variety). When the scene has been appropr i-

ately prepared , it can be displayed by swapping the state

variables , and calling the routine which resets the

display processor to whatever parameters are contained in

the current state variables.

2.3.7 Cleanup after a Goto

After the swap of state variables mentione d in the preced-

ing section , all information relatin g to the old state is

a v a i l a b l e in the “nex t” structure. The core buffers as s o—

[1 d ated with this state ’s tile map are returned to the

-
~~

_‘. ~~~ ~~ •~~~~~~ ~~~Q~P ~ •- • -
-

-

--_-- • • ~~~~~~
--

~~~~~~~~~~~~~~~~~~~~~~~~~ 
p-

~~~~~~~~~

SDMS Quarterly Technical Report Page — 21—
MOTION THROUGH THE GRAPH ICAL DATA SPA CE Section 2

buffer manager and their tile blocks cleared , and the

bounds of the various rectangles and display parameters

are all set to —1. The I—Space arid i—plane descriptors

are not cleared , on the chance that they may be u s ef u l in

the next goto . (This is especially likely for the I—Space

descriptor in a zoom through multiple i—planes of an I—

Space.)

2.3.8 Special Processing for a Pop—Through

Pops differ from simple goto ’s in three r e s p e c t s :

1. They are initiated by the user ’s motion , rather than

an explicit request; and therefore

2. their destination is calculated or supplied by a

request to the icon manager rather than provided by

the user ; and

3. they must maintain the current view while preparing

the new one .

This last requirement may involve scrolling or zooming the

cur rent scene , with the associated data transfers among

disk , core , and display buffers.

All processing for the current scene is triggered and syn-’

chronuied by a reg ular idop in which the joystioks are

-

ii
-- — -. - 1 r — ~~~~~

.
~~~~

— —
~~~ * • —

~~~ , - —
~~~~~~~‘ . •

~~~~~• -
~~~~•~~

-
• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

— ——~~~~~~~~~~~~ -~~-_ = ~~~~~~~~~~~~~~~~~~~~~~ — --- • ~~~~~~~~~~~~~~~~~~~~~ •

F —-—- _— —
—-—‘-

~

—
~~

—

SDMS Quarterly Technical Report Page —22—
MOTION THROUGH THE GRAPHICAL DA TA SPACE Section 2

z ead every 30 ms.; if the current scene is not to be

abandoned during preparation of the new , then that

• preparation must be fit in and around this fixed cycle.

This per iod is far too short to accomplish the complete

• setup , so it must be broke n into small pieces which can be

performed independently in a single cycle on the joys—

ticks , and a mechanism provided for properly sequencing

the perfo rmance of those parts.

This mechanism consists of a small executive function

which maintains an indicator of which step is to be taken

flext , and incorporates the schedule that processing those

steps must follow. The analogy is straightforward to a

simpl e cpu whose program counter indicates the next setup

step to be processed , and whose basic clock tick

correspond s to reading the joysticks once. Departures

from that analog y are discussed below.

• Recognizing the need for a pop—through and acquiring its

destination are the other two areas of difference from a

simpl e goto . Performing a zoom (described in Section 2.2)

triggers the setup for a pop; in the inward direction ,

any zoom higher than scale 2 is taken as ev idence of the

user ’s intent to pop into another scene; in the reverse

mot ion , the major work is involved in zooming out to lower

scales of a single scene , so the pop processing is not

initiated until the user reache s scale 3.

[1
~~. • •~~ —‘ - - - — - —

•.l.
•

~,
~~~~~~~~ ~~~~~~~~~~~~~~~ ~~ 

• 
-

• •



• -‘• - - •

SDMS Quarterly Technical Report Page —23—
MOTION THRO UGH THE GRAPH ICAL DATA SPA CE Sectio n 2

~~11 
- 

-

When it appears that the user may need to pop into another

i—plane , the destination must be found . If a further i—

plane exists in the current I—Space ii the indicated

direction , that will be the destination , with the new

scene in the same universal coordinates , and at the oppo-

site extreme of scale (current defaults are 2 arid 6). If

no such i—plane exists , a request is sent to the icon

manager to determine whether the user is located over a

port. After searching its database , the icon manager

fills in two structures in shared core , one indicating the

destination if the user moves down , and one for up, from

the current position ; these structures also indicate how

far the ports extend s, so the icon manager need not be

bothered with further queries while one answer remains

valid . I,f no port exists , the icon manager fills in the

destination structur e with the value — 1 , and the navigator

simpl y stops when it reaches the maximum zoom in that

direction.

2.3.9 Failures and Cancellations

An y form of goto may fail because the requested 1—Space or

i-’plane doe s not exist , or because insufficient buffer

•r u space is available to set up the new scene. Non —ex istent

[] -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- • •

~~~~~~~~

• - _ •
-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-~

L SDMS Quarterly Technical Report Page _211_
MOTION THROUGH THE GRAPH iCAL DATA SPACE Section 2• I t
I—Space and i—planes are recognized when the attempt is

made to retrieve their descriptors. This take s place

before any resources such as buffers are committed to the

new scene , so a failure simply results in cancellation of

the goto without any backtracking .

In a simpl e goto , lack of buffers lead s to restoration of

the current view (possibly including its nay aid ) and

display of an explanatory message on the user ’s console.

In the normal case , the amount of buffer space required to

restore a view cannot be more than what was acquired by

releasing that view ’s buffers in the f irst place , the res-

toration of view is generally possible. (The exception

occur s in a situation in which a nay aid must be

redisplayed for a higher scale view of an i—plane ; the

amount of core buffer space needed temporarily for the nay

• aid may exceed that used by the main display, and the

• difference may be temporarily allocated to some other pro-

cess such as picture construction. This situation should

not arise in the current system because no other process

requires enough buffers to prevent restoration of a nay

aid , and , independently, the current nay aid is not

currentl y destroye d until sufficient buffer space has been

ob ta ined  for the goto to succeed.)

In the zoom/pop case , buffer space is generally not avail-

able at all times; some amount is tied up supporting the



• H SDMS Quarterly Technical Report Page —25—
MOTION TH ROUGH THE GRAPHICAL DATA SPA CE Section 2

current display. In the case of a zoom in , this amoun t is

decreasing steadily, so that after the current display

reache s scale 14 , there is generally enough to support the

scene in preparation as well as the curent one . In the

opposite direction , the amount of space required for the

new scene is small enough to be compatible a scale 2 image

on the current display ; the only difficulty in assigning

the buffer area earlier is ensuring that the two do not

overlap. In either case , however , extraordinary situa—

.~.LOflS may prevent buffer allocation at the usual time . If

this happens , the zoom/pop must be delayed until a later

stage of the zoom (higher scale) , or , ultimately, until it

can be treated as a simple goto , succeeding or failing

finally just as a simpl e goto would.

If user motion in the z—direction initiates setup process—

Ang for a pop, but the user then reverse s direction or

begins to scroll horizontally, the preparation for a pop

is cancelled , on the theory that the destination is no

longer what was calculated initially. Resumption of the

original Z motion re—initiate s preparation for a pop, but

of cour se , the user may be starting from a higher scale

than usual , so some delay may be ev ident before the pop is

executed .

Cancellation before buffers are allocated is free is per-

il formed as follows . The new I—Space and i—plane

~~~~~~~~~~~~~~~~~~~~~ ~ ::~‘ 
-

• _ - • •
• • • • •~~i ~~~~~~~ ~ • • ~~~

• - - •

f i SDMS Quarterly Technical Report Page —26—
MOTION THROUGH THE GR APH ICAL DAT A SPA CE Section 2

information is retained , since it has not destroyed any

informa tion needed for the curren t scene , and may yet

prove useful . If buffers have been allocated to the next

view , they must be released; if they were taken at the

expense of the current view , they must be reloaded with

curent information. Cancellation that occur s after the

screen has been set to the new view is ineffective ; it is

simpl y taken as a scroll on the new scene , or a goto in

the reverse direction.

-

-- ‘7
-

SDMS Quarterly Technical Report Page —27—
MOTION THROUGH THE GRAPHICAL DA TA SPACE Section 2

2.3.10 ZOOM CYCLE

Zoom_cycle is called on each joystick loop in which

z_speed is non—zero . At each invocation , it determines if

there is work that can be done in preparing for a pop—

through into a new location , and if so does a portion of

that work calculated to fit in the 30 ms window dictated

by the joystick cycle. Various conditions may cause the

expected pop to fail or be cancelled . Zoom_cycle is

responsible for cleaning up the remains and leaving things

in an acceptable state if this happens. If the destina-

tion is a process rather than a location in information

space , zoom_ cycle is responsible for invoking the process ,

waiting for its termination , and then restoring the state

j of the display.

Zoom_cycle is essentially a switch on the value of the

zoom_agenda word in common. This is initialized to the

value ZREADY , and manipulated by the various functions of

zoom_cycle; it correspond s to the program coun ter of

zoom _cycle. A static destination structure (correspondin g

to those in common which refer to ports) is used to main-i

t a m information about an adjacent i—plane . destination

across invocations; a stat ic pointer is used to indicate

which destination des criptor is relevant. Other informa —

tio n built up about the desti nation is maintained in the

I_
_i

Ii
L..

-

-

- ___________
- _ —

SDMS Quarterly Technical Report Page —28—
J4OTION THROUGH THE GRAPHICAL DATA SPACE Section 2

- •

•
“nex t” sta te_variables structure in common.

Discussion of the specific states of zoom_agenda , and the

processing invoked for each is described in Appendix B.2.

• •

SDMS Quarterly Technical Report Page —29—
THE ICON MANA G.ER Section 3

3. THE ICON MANAGE R

3.1 Function

The function of the Icon Manager is two—fold . One function

is that of a database management system for information

pertaining to icons , I—Spaces , and regions. The second

function Is the management of space in the Graphic Data

Space (GDS).

The Icon Manager contains information about every icon in

the GDS such as: its origin , ex tents , color , whether it

has been named , whether it is a port , and pointers to

entries in parallel databases. I—Spaces are t reated as

special icons , and have additional information stored .

L Regions within I—Spaces can be allocated and are con—

.~idered as sub—I—Spaces. Details concerning design and

implementation issues are discussed in the following see—

P tions.

The Icon Manager allocate s space for new icons within an

I—Space or region. When the requested location of a new

H icon would overlap the reiI~n or I—Space , the nearest

non—overla pping location is returned . It also determines

H
-

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

..



SDMS Quarterly Technical Report Page —30—
THE ICON MANA GER Section 3

[j where existing icons are located and whether an arbitrary

point in any I—Space is contained within an icon.

The Icon Manager runs as a separate process in SDMS and is

called by other processes such as the navigator , the

hierarchy map process , the association processor ,

integrity maintenance , picture construction , and the

graphical editor.

3.2 Design

• 3.2.1 Hierarchy of Data

The Icon Manager maintains a str ict hierarchy among the

objects that it manages. That hierarchy is the following :

1. I—Space

2. Region

3. Icon

4. Subicon

An I—Space is a data sur face which may consist of several

planes (i—planes) of graphical information. A region is a

user—defined rectangular portion of an I—Space which may

[1
• - • _~~~ S_ ~’~~~~~~~~~~~~~~ ~~~~~~~~ •~~~ ~~~~~ - _ 5 . 

- 
- 

_



SDMS Quarterly Technical Report Page —3 1—
THE ICON MANAGER Section 3

be used to target the results of an association. An icon

is a pictorial representation of some datum or collection

of data in the symbolic database . It occupies a rectangu-

lar area in an I—Space on one or more of the i—planes

which comprise the I—Space. Subicons are rectangular areas

w i t h i n  an icon. They are to an icon what an icon is to a

region and/or I—Space.

An I—Space can contain either regions , icons , or both. A

region can contain only icons. An icon may contain subi—

cons. Note that there need not be regions within an I—

Space , nor are subicons required within an icon. Such

functions are supported but their use is optional .

When a new I—Space is created , an entry is made in a list

• of I—Spaces and in the master list of icons. A unique I—

Space Id is assigned to the new I—Space. Thereafter , when  H
regions or icons are created in that I—Space , they must be

targeted within the bounds of the I—Space. An attempt to

place the icon or region outside the bounds of the I—Space

causes an error condition.

Regions are useful for the logical subdivision of an I—

Space. The user might , for example , divid e an I—Space into

three regions and target the results of three different

associations to each of the three regions. The icon

ma nager guarantees that no icons targeted to a region will

- 

~~~~~~~~~~~~~ ~~
• — • - •• •- _a - —•- -

________ •
~~~~~~~~-~~~~~~

-— - --— •~~~~~- •~~~~~~~~~~•~~~~ •~~~~~~~~~

SDMS Quarterly Technical Report Page —32—
THE ICON MANAGEH Section 3

..~e moved outside that region to avoid collision with

existing icons.

When an icon is created , it is targeted to a location in

an I—Space. That location is examined to determine whether

an existing icon overlaps that area. If so , the icon is

moved within the region , if there is one , and/or I—S pace

until an unoccupied location is found . If there is no room

within the region or I—Space , an error condition is

returned .

Icons are the fundamental unit of graphical information in

the GDS. They may be subdivided using subicons to convey

more detail. A ship icon , for exampl e , might be subdivided

into subicons for the hull , flag , and superstructure.

These subicons can then be modified by the appr opriate

rul es i.i the Icon Class Description Language (ICDL).

3.2.2 Database Format

The Icon Manager ’s database consists of a number of Unix

files which are managed solely by the Icon Manager . Each

of these files contains records pertaining to a class of

objects maintained by the Icon Manager . Files exist for

the following kinds of objects:

•d



•

SDMS Quarterly Technical Report Page —33—
THE ICON MANAGER Section 3

— I—Spaces

— Re gions

— Icons

— Ports

• — Names

The format of these files is discussed below.

3.2.2.1 The I—Space File

The I—Space file contains one record for every I—Space

which currently exists. In addition , information is stored

r e l a t i n g  the l a rge s t  v a l i d  I—Space identifier assigned , a

coun t of deleted I—Space records , and a pointer to a

linked list of deleted I—Space records. Each record within

the file contains the I—Space Id for that record and the
S 

icon—id which correspond s to that I—Space. The icon— id

serves as a pointer to the corresponding record in the

icon file , where detailed information about the I—Space

may be found . The I—Space Id serves as an index to the

appropriate I—Space record .

3.2.2.2 The Region File

The region file is identic~al in format to the I—Space

file. Each record contai ns a unique region—id and a

[1
• _ _ _ _



SDMS Quarterly Technical Report 
• 

Page —34—
THE ICON MANAGE R Section 3

LI
pointer to the corresponding record in the icon file. In

addition , a coun t of records , a coun t of deleted records ,

and a pointer to a linked list of deleted record s is main-s

ta m ed . Like the I—Space file , the region— id is used as an

index to the appropriate region record .

f 

3.2.2.3 The Icon File

• The icon file contains the essential info rmation which the

• Icon Manager need s to perform its duties. The I—Space and

region files simpl y act as maps , mapping I—Space or region

id’s into icon— id ’s. The real information is contained in

the icon records. Icon records contain the following

information:

Origin of icon in un iversal coordinate s

Extents of icon in universal coordinates

Parent of icon

Child of icon

Sibling of icon

Type of icon

Pointer to correspo nding port record

Pointer to correspo nding search record

I—Space which contains icon

Color of icon

Background color of icon

_______ — •



• -~ ----—---~~-—w~ 5-

SDMS Quarterly Technical Report Page —35—
THE ICON MANA GER Section 3

• 
• Pointer to corresponding name record

• The origin of the icon is the coordinates in x , y, • and z

• 
of the uppe r left corner of the icon. The extents of the

icon are the dimensions of the icon in x , y, and z.

The parent of the icon is the icon— id of the smallest

object enclosing the icon. I—Spaces have no parents , so

this value is irrelevant for an icon whose type is I—

Space. A region ’s parent is the I—Space which contains it.

• A simpl e icon (one whose type is icon) has either a region

or an I—Space as its parent. A subicon has the icon which

contains it as its parent.

The child of an icon is the icon— id of an icon (of any

L type) which is contained by that icon. The child is actu-

ally a pointer to the beginning of a linked list of all

icons which have the same parent -. An I—Space ’s child may

be either a region or a simple icon. An empty I—Space , of

- 
cour se , has no children . A region ’s child can only be an

icon , and an icon ’s child can only be a subicon . A

• • subicon ’s child car. i1y be another subicon.

The sibling of an icon is the icon— id of the next icon ii

the linked list of the parent’s children . Hence , the

parent icon record has the icon—id of one of its children .

That child is in turn linked to another child of its

I_ -I
Ji

•5 5 ~~~~~~~~~~~ —• - - ;_ _ • _ • • • — 
~~~~~~~~~~~~~~~~~~ ~~

— - _~~_~ •~~~ T~~
- —— • -

• SDMS Quarterly Technical Report Page —36—
THE ICON MANAGER Section 3

parent by its sibling entry. By following the list of

siblings starting at the child of an icon , one can f ind

all icons which have the same parent.

• The type of an icon is one of: I—Space , region , simple

icon , subicon , or port. Ports and simple icons are identi-.

cal , except that a port contains a pointer to an entry in

the port file.

Only an icon of type port has a valid pointer to a port

record . In all other icon type s this field is initialized

to a default value .

Icons of all types except I~Space and region have pointers

to records in the correspo nding search file. The function

of the search file will be described in a following sec—

tion.

All icons contain a field which is the the I—Space id of

the I—Space in which the icon is found .

The color of an icon is stored in order to distinguish the

area of pr ime interest from any background that might be

contained within the bounds of the icon. This value is

only valid for icons whose type is simple icon. The back—

ground color is the color of the area where the icon is

placed . This is saved so that when the icon is erased , the

• proper color will be used to overwrite the icon.

H

—--5-- - - ••-~~~~~~- - -5• • - - . • . .-• ••• . • - - -

SDMS Quarterly Technical Report Page -.37—
THE ICON MANA GER Section 3

1
•

An icon of any type may be named . If the icon has been

• named , the pointer to the correspo nding name record will

be filled . Otherwi se , it contains a default value . -

In addition to the information contained in each icon

record , the icon file also contains information such as:

• the last icon— id assigned ; the coun t of deleted icon

records; and a pointer to a linked list of deleted icon

records. The icon— id is used as an index to reference the

appr opriate icon record .

3.2.2.4 The Port File

The port file contains additional information about icons

whose type is -port. A port is a gateway to a point in the

same or another I—Space , a specific icon in the GDS, or a

Unix process. The port record has the format:

Type of port

Length of record in bytes

Deleted flag j
Information specific to each type of port

The port type can be one of: point , icon , or unix . The

length is the total length of the record . The deleted fl ag

signals whether the information in the record is valid .

~
--

~::~-~. r -
- - . • .

~~~~~IT1 - 
.1



• • - 
_  

_ _

— -5 - •-- - ---5-- . - -~~~~~

• 1 SDMS Quarterly Technical Report Page -~38-’
- THE ICON MANA GER Section 3

Point ports contain the following additional information:
L~ target I—Space id; universal coordinate s (x , y, and z) of

a point in that I—Space; and the scale to which the

display should be set upon popping through.

Ii
Icon ports contain the following additional information:

• 
- the icon— id of the icon which is to be displayed ; and the

scale to which the display should be set upon popping

through.

Unix ports contain the following additional information:

the name of the Unix process to be run upon popping

through; and two arguments to that process if required .

In addition to the information contained within the port

• records , the port file contains the last port— id assigned

and pointers to deleted records of each port type .

3.2.2.5 The Name File

H The name file contains a list of names which have been

assigned to icons. Name record s have the format:

Name

Icon—id

Tree l i n k s

(1
F-i

-



SDMS Quarterly Technical Report Page —39—
5 THE ICON MANAGER Section 3

The name of an icon may be up to 15 ASCII characters in

length. No case mapping is performed , so upper— and lower-.

case names are distinctive. The icon— id is a pointer to

the icon record to which the nam e belongs. The tree links

are pointers to other name records. The name file is main-

tained as a bina ry tree to allow efficient searching for

• and insertion of name records.

3.2.3 Spatial Database Format

In addition to the information database which contains

information about the meanin g and function of an icon , the

• I Li Icon Manager also maintains a spatial database . The spa-

tial database allows the user to map between spatial coor—

dinate s and entries in the icon file.

The spatial database consists of a number of files , one

for each I—Space in the GDS . Within each file are record s

for each icon in that I—Space which is not not of type I—

Space or region. These files are referred to as search

files. The records within each file are sorted on the

bas is of the coor dinate s of the icon ’s origin. This allows

en effic ient search for an icon given the coordinate s of a

point within the icon.

• • ~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~— • 5 
• - , - •

——•-•5•5. --—-5 • -•-— ,--— •,~~~~• • •
_

•~~• • ~~~ .5



5 - 5 Th~

SDMS Quarterly Technical Report Page -.140~THE ICON MANA GER Section 3

The spatial database is used when determining whether an

existing icon contains a given point in the I—Space. This

H is of value when determining what icon the user is point—

ing to on a display and in positionin g new icons (the

findspace problem ).

The format of records in a search file is as follows :

Or igin of icon

Extents of icon

Icon—id

Links

The origin and extents of the icon are the same as are

stored in icon records. The icon— id is a pointer to the JH corresponding record in the icon file. The links point to

the next search records in the sorted file.

The search files contain record s which are sorted on first

the y—coordinate , and then the x—ooordinate of the icon ’s

origin. This has the effect of dividing the I—Space into

rows of icons. Only those rows which have y—origins less

than or equal to the search point’ s y—value need be

searched . The search of a particular row need only con—

~Lnue until an x-.origin greater than the search point’s

z—val ue is found .

- 

5. H
—. — ~~~~~~~~~~~~~~~~~~~~~~ 

S:SS•5 - —---5------ - 5

___________ -• S



~~~~~~~~~~~~—-~~~~~~ - - - - -- •~~~~ -—5— -- ~~--- -S

~~~~~ 1

[1 SDMS Quarterly Technical Report Page — 41—
THE ICON MANAGER Section 3

3.2.4 Manipulation of the Database

Standard operations on the database include retr ieving a

recor d , adding a new record , deleting a record , and updat-

ing an existing record . Retrieval is a straightforward

process , assuming the appropriate index in the appropriate

file is krown . Additi on , deletion , and update s, however ,

are - more complex in that several files must be modified

and kept consistent with one another. These operations

are the subject of this section.

It is more revealing to discuss these operations in t e rms

of the various types of icons that are being manipulated ,

since different icon type s will cause different files to

be referenced .

p

3.2.4.1 I—Spaces

• 5 Addition of an I—Space is relatively simple. First , a new

H I—Space id must be assigned . If there are deleted I—Space

recor d s , the I—Space id at the head of the list is

assigned and the deleted~ list and counter are fixed . 0th-.

erw i se , the I—Space count is incremented and the new value

assigned . Next a new icon— id must be assigned . The same

proced ure is followed as for the I—Space Id. Deleted
i

icon— id ’s are re—used whenever possible. The I—Space id

-- 
H

~ , f l
- . ;~ .— -,• -

~ :_



- --- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

SDMS Quarterly Technical Report Page -.42-
U THE ICON MAN AGE R Section 3

and icon—id are inserted into an I—Space record and writ-

ten to the I—Space file. Now the icon record is filled

with the origin and extents of the I—Space , the icon type

is set to I—Space , and the remaining value s are defaulted .

The icon record is then written to the icon file.

Deletion of an I—Space is a straightforward process. The

relevant I—Space record is marked as deleted and chained

into the list of deleted records. The updated record is

written to the I—Space file. The icon record pointed to by

the I—Space record just deleted is retrieved , if the I—

Space has no children , the record is marked as deleted and

chained into the list of deleted icons. If the I—Space had

children , then it is necessary to follow the chain of

siblings , deleting them (see Section 3.2.4.3). If any icon

in the chain has children , then they, too , must be

deleted . If the I—Space was named , the name must be

deleted from the name file (see Section 3.2.4.5). Once

this has been com pleted , the I—Space ’s icon record can be

marked deleted and chained into the list .

The most common update of an I—Space is to change its

size . This is accom plished by modifying the appropriate

icon record . One must make sure, howeve r , that no children

of the I—Space will be outside the new bounds. This

entails a che ck of all children of’ the I—Space in the ;
manner described above. Icons which would be outside must

- 
- -

~
.-- -- .-. -

~~
---., -——- S - - -

~ - —-v -
5—-- - L~~~~~~ !~~~~~~~~~~~~~ ‘~~~ 2 ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~



F 
- - - - - ------- -- - —-------—-— --------5--- - -5--— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--

P 1 SDMS Quarterly Technical Report Page —43—
THE ICON MANAGE R Section 3

be deleted from the appropriate f i les.

3.2.4.2 Regions -

Since regions and I—Spaces are logically the same , the

same proced ure is followed when adding , deleting , and

updating region record s as for I—Space records. ,
-

One additional constraint when adding or updating a region

is that the new region must fit w i t h i n the bounds of its

containing I—Space.

3.2.4.3 Icons

Adling a simpl e icon requires more than the physical

- insertion of a new record in a file. The proposed icon

must be subjected to the find space process (described in

Section 3.2.5). This guarantees the icon will not overlap

any existing icon. Once that is done , a new search— id must

I I be assign ed in the search file for the appropriate I—

Space. Deleted search records are re— used whenever pos s i-.

ble. A new icon — id must also be assi gned . Deleted icon

-
records are used whenever possible. This done , the search

record is filled with the origin and extents of the icon

Ii - and the icon -s id . It is then inserted into the proper spo t

-
in the sorted list s of the search tile. The icon record

—.

~~

- r
~~

—
_ E:~~~~~

_

~~~~~~~~-— 

.

-- - -— 5-



_  - --5-- .- - -- - -~~~~~~~~~~~~~~~~~~~~~

1 ! SDMS Quarterly Technical Report Page —44—
THE ICON MANAGE R Section 3

[1 can then be filled in.

The icon record is filled with the origin and extents of

the icon. The parent is filled with the icon— id of the

icon record of the containing I—Space. If the parent has

a child , the new child becomes the new icon , and the new

icon ’s sibling becomes the old child of the parent. Other-

w ise , these value s are defaulted . The child value is

defaulted . The type of the icon is loaded . The I—Space id

and search— id for the icon are load ed . All remaining

value s are defaulted . The icon record is then written to

the icon file.

To delete a simple icon , the appropriate icon record is

retrieved . If the icon was named , the name record must be

deleted (see Section 3.2.4.5) The search record for the -

icon must be deleted . This involves updating the sorted

linked lists in the appropriate search file. If the icon

has a child , it must also be deleted . If the icon ’s child

had siblings , they and any of their children must also be

deleted . Once all offspring have been deleted , the icon

itself can be marked deleted , and chained into the list of

deleted icons. Deletion can becom e a recursive process

when there are children and grandchildren .

- • Updating an icon usuall y means changing the size of the

icon or movin g it . In the case of a change in size , if

[ 1  -

H 
-- -

~ ~~~~~~~~~~~~ ~~ •-~~ 
- - -~~~ -~ : r-

5 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— - - •• . • _ •

—~
- - -— ---- ~~~~-‘-—— - ———- — _ _ _

- - 5 - ——

1. SDMS Quarterly Technical Re port Page — á15—
THE ICON MANAGE R Section 3

II

H the icon becomes smaller , then all that need be done is to

change the extents in the icon record and in the appropr i—’

1. -

ate search record . If the icon grows in size , the search

record for the icon must be deleted , and the icon re—

- submitted to the findspace process. The results of the

findspace process are then loaded into a new search record

and inserted into the search file. The new extents are

loaded in the icon record . If the icon had to be moved by

findspace , then the process described below must be exe-

cuted .

When an icon is moved , the icon record is loaded with the

new origin. The icon ’s sear-oh record must be deleted and a

new one inserted with the icon ’s new origin. If the icon

H had children , t hen the origin stored in their icon record s

must be updated with the relative change in position. The

search records for all the children must be deleted and

new ones inserted with the updated origins.

} 3.2.4.4 Ports -

Adding a port consists of making an existing simpl e icon

into a port. This is accomplished by assigning a new

port— id for the appropriate type of port. If there is a

deleted port record of the proper variety available , then

it is re— used . The port record is filled with the

H -

I ,
— -

-
5-~~~~~~~~~~~~~~~ -~~ -

— - - - - 5-- - -~~~~~~~~5- - - - —

-- 5-- -

SDMS Quarterly Technical Re port Page —46-.
THE ICON MANAGER Section 3

appropriate values and then written to the port file. The

icon type is changed to port and the port pointer is
(1

saved . The icon record is then re—written. -

Deleting a port is accompl ished t~y stripping the icon of

its status as a port. The port record is linked into the

list-of deleted port records. The icon type is changed to

icon and the port pointer is defaulted . Both port and icon

records are written back to their respective files.

Updating a port means changing the value s stored in the

port record . The port record is retrieved , the new value s

loaded , and the updated port record is written back to the

port file.

15i
3.2.4.5 Names

Adding a name first requires that the icon to be named

doesn ’t already have a name . If it does , an error return

is taken. If not alread y named , the name file must be

searched to ensure that the new name is not alread y used .

If the new name is not in the search tree , a new n ame

record is created with the name. It is then loaded with

the icon— id of the newly named icon. The record is then

written into the name file. The icon record is updated

with a pointer to the corresponding name record .

- [1

- -- -- -5-- - -5- — -~~~~~~~

- :-
~

—

r 5 5 -
~~~ - —---- - —

~~~~~~~~~~~~~~
- - —---—--- --- —- • - •

~~~~~~~~ -- - ----- - ------— - ----- ~~~~~-- --.~~~~~~~~~~~~~

SDMS Quarterly Technical Re port Page — 4 7—
THE ICON MANAGE R Section 3

~L1
Deleting a name requires searching the name file for the

desired name. If i t  is found , the icon record to which the

name belong s is retrieved and the name pointer cleared .

The name record being deleted is then patched into a list

of deleted name records. Then the binary search tree must

be fixed . This is done according to the algorithm sug-

gested by Knuth , Vol. 3 (KNUTHI.

Updating a name requires that the appropriate name record

be deleted , and a new -one created . If the new name is

alread y in use , an error return is taken.

3.2.5 Findspace

Findspace refers to two separate tasks . One is the detec-

tion of overlaps in the GDS . This is used for two pur-

poses: determining if a point is contained within an icoti ; -

and determining whether a proposed icon would overlap any

existing icon . The second task is moving an icon which

overlapped an existing icon to a portion of the region

and/or I—Space where it doesn ’t.

Using the mechanism of search files which contain sorted

lists of all icons within an I—Space , the detection of

overlap is simpl e and eff icient.

F-i
. 5 .- — . -

- 
5—-- L~. - - .V •-. .-- s •~ - - 

-
- -  -.~-:- . v—- ~~~~ - - 

- - - - - - - — - -

L ~~~~~~~~~~~~~ -- • -  . -  - — - — •— - — - ‘ri” ”



F- — - - _ ~~~-- —--~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Jj 
SDMS Quarterly Technical Report Page —48—
THE ICON MANAGER Sectio n 3

To find which icons contain a given point in an I—Space ,

it is necessary to compare the origin and bounds of each

icon in the I—Space with the coordinates of’ the point.

However , by using sorted lists of’ icons based on their

origins , it is possible to red uce the search to a small

subset of the icons in the I—Space. It is necessary to

examine only those icons which have both y—orig in and x—

origin less than or equal to the corresponding coordinate s

of the point. The search files are structur ed as sorted

lists of sorted lists. The initial list is sorted on y—

origin and the other lists are ‘sorted on x. Therefore , a

search need only examine those lists which have y--origins

less than or equal to the y-.coordinate of the point. Each

list need only be examined until an x—origin is found -

greater than the x—coordinate of the point. The search

terminates when an icon is found containing the point or

an icon with a y—origin too large is found .

An almost identical scheme is used to find whether a pro-i

posed icon would overlap existing icons. The y—list is

examined until an icon is found with a y-.origin greater

than the bottom y—value of the proposed icon. The x—lists

are searched until a x-.or igin greater than the right x—

value of the proposed icon. A check is performed on all

icons in the search file which meet these qualifications

to make sur e that no point of the propo sed icon is within

—5- - — -  — -
-
5-- --,—— - -- --—-5- - - —5----- - -_____ - - - - - - 5 - - -  -5 - - -

-—----5- —-5 - 5- —5- -5- — —.-- - ~
:- - -

~;~~~ -s-.~~~~~_



-5 
—5-- -

I SDMS Quarterly Technical Re port Page — 4 9—
THE ICON MANAGER Section 3

the existing icon.

1 If a propo sed icon would overlap an existing ioon , it must

be moved to avoid the collision. The Icon Manager moves
I colliding icons in a spiral pattern around the target

location of the proposed icon. This allows the icons gen—~

erated by an associate to be clustered around the target

location. When an overlap is detected , the Icon Manager

moves the icon to the next position in the spiral , and

examines that location for overlap. The process repeats

until an unfilled slot in the spiral is found. That

F becomes the location for the new icon. If the spiral would

take an icon outside the bounds of the target region or

I—Space , that slot is ignored and the pattern followed

until the spiral re—enters the region or I—Space. If there

- 

is no room in the I—Space or region , an error condition is

returned .

H
- 

1 . 
- ~~~~~~~~~~~~~ - .

—5 — ---5 — -~~~~~~‘ —~.~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
—5-—- —~~~~~

_
~~

_ _  5— 5-— -5-- —- — --- --5



-—--— -5—— - 5 - -  -
~~~~~~~~~~~~ 

- - - -— -— - —~~~-~~~—~-—-—- 5-—-- -5--- - ~ ——— - —-—--- -- ---- ~ -
-5-’

- -5-- --—-,

SDMS Quarterl y Tec hn ical Re-port Page -~5O—GRAPHICAL VIEWS OF SYMBOLIC DA TA Section 4

4. GRAPH ICAL VIEWS OF SYMBOLIC DATA

A key featur e of the CCA SDMS prototype has been the

[I automatic generation of graphical v iews of symbolic data .

This symbol ic data is maintained in the INGRES relational

database mana gement system (HELD STONEBRAKER WONG) . The

graphical views are collections of pictures called icons

which represent tuples in INGRES . The appearance and

placement of an icon is dependent on the contents of the

tuple it repr esents.

The database command language of SDMS, called SQUEL for

Spatial QUEry Language , is a superse t of QUEL , the INGRES

command language. SQUEL contains two commands which

invoke the automatic generation of icons. The ASSOCIATE

command creates a dynamic pictur e of a relation in which

updates to a tuple subsequent to its association will

result in graphical updates to the icon which represents

it. The mechanism s which monitor changes in the symbolic

database and bring about the required changes in the

graphical database are referred to as Graphical Data Space

(GDS) integrity maintenance.

The other command which cause s automat ic icon generat ion ,

the DISPLAY command , produces a static view of the data—

base . GDS inte grity ma intenance does not apply to icons

— -5 -- —5---—- -5 - -— — -
- - — 5- 5 . —.—- 5---— .- — - ‘-7 -:

—-5— —5- —5- —5-.- — 5-— --5— —--5---
—I—- -~~~ — —

-~~~ 5--—
- -

SDMS Quarterly Technical Report Page —5 1—
GRAPHICAL VIEWS OF SYMBOLIC DA TA Section 14

produced by the DISPLAY command .

Both the ASSOCIATE and the DISPLAY commands must specify -

an Icon Class Description (lCD). An lCD is a set of rules

which specify the appearance of an icon as a function of

the contents of a tuple. A tuple and the icon represent—

ing it are referred to as an entity tuple and its entity

icon.

4.1 ASSOCIATIONS

The SQUEL associate command is invoked with two arguments ,

the name of a relation and the name of an icon class

description. This command directs SOilS to create an

entity icon for each tuple in the specified relation

according to the rules of the icon class description. The

tuple that a particular icon represents is referred to as

the icon ’s entity tuple.

Subsequent symbolic data changes in an entity tuple will

cause appropriate graphical data changes in its entity

icon through the mechanism s of graphical data space (GDS)

integrity maintenance. Association processing involves

three SDMS processes:

1. the SQUEL interpreter , which recognize s SQUEL corn—

i- I
i- -i

~~~~
_

_ -- — —



— ----5------ -- ---5 - - -- - - - -5 -— - — 5 - -— - -

1 - i
SDMS Quarterly Technical Report Page —52—
GRAPHICAL VIEWS OF SYMBOLIC DA TA Section 14

L 
mand s;

2. the association processor , which is the background

H controller of association processing ; and -

3. icon creation -
~~ picture construction , which actually

manipulate s the GDS.

When a valid associate command is recognized in the SQUEL

interpreter , the association processor is sent the neces-

sary Information to begin the association. This informa-

tion consists of the contents of the tuples to be associ-

ated and the name of the icon class description. When

association processing is complete , the associat ion pro-

cessor provoke s maintenance of the associat ion map rela-

t i o n  in the SQUEL interpr eter . The association map rela-’

tion is the SDMS system relation which provides a map

between entity tuples and their associated entity icons.

4.1.1 The association map

The maintenance of the correspondence between entity

tuples and entity icons is implemented by several table—

driven routines collectively known as graphical data space

(GDS ) integrity maintenance. The driving table is the

association map relation. Maintained by the SQUEL inter—

preter as an SDMS system r e l a t io n , the a s soc ia t ion  map

- I

. -

_ _ _ _ _  .—-— -—.-------- ---—- -5- -5— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- - - -5- - -~-—



__________

SDMS Quarterly Technical Report Page —53-
GRA PHICAL VIEW S OF SYMBOLIC DATA Sectio n 14

relates entity icons to entity tuples and the icon class

descriptions used to create them. The actual domains of’

the map are: relation , tuple—id , icon—id and icon class

description. Tuple— id s are INGRES assigned identifiers

that are unique only to the tuple ’s relation , hence , the

association map ’s relation and tuple—id domains are both

necessary to specify a unique entity tuple. Icon— id s are

SDMS assigned identifiers unique to the entire GDS . By

mapping relation names to invalid icon—id s, the associa—

tion map also serves to flag any associated relations for

which the icon—id s are presently unavailable. This situa-

tion occur s whenever an association is in progress as

icon-’ids are inserted into the association map onl y after

• association processing is complete .

All association map maintenance is performed by the SQUEL

interpreter . Most entries to the map are mad e following

association processing . The associat ion processor done

flag is consulted upon each activation of the SQUEL inter-

preter . A set flag indicates that new entity icon— id s are

available and should be entered into the map with their

entity tuples before further SQUEL processing .

i i
H 

_
—---5- tc—____ 5- - — - S —. - - -

——-----
~~~~~~-- -- ~~—

— —-~~~~~~~~~~ ~~~~~~~~ —— — — - 5 -5— - —- —5--

.
-

SDMS Quarterly Technical Re port Page — 54—
GRAPH ICAL VIEW S OF SY MBOLIC DA TA Sec tion 14

14.1.2 Implementation overview

Initiation of association processing involves the copying -

the associated relation from INGRES storage structures to

the standard UNIX file rel.SDMS. The association proces-

sor is then invoked with two parameters , the name of the

icon class description and the name of a file containing a

description of the relation. This file provides the asso-

ciation processor with the information necessary to “read ”

tuples from rel.SDMS. In the event that a relation

description does not exist at the time of the association ,

the SQUEL interpreter create s one before association pro-

cessor invocation.
-

The purpo se of the association processor is to allow

entity icon construction to proceed concurrently with

other SDMS operations. Its specific function is to

repeatedly invoke icon creation — picture construction

(once for each entity tuple in rel.SDMS) and to save the

returned icon— id s in the UNIX file icons.SDMS.

1~

The icon creation — pictur e construction process manipu-

lates the GDS at icon granularity. Its functionality

includes icon creation and erasure. Arguments to this

process are the contents of a tuple (passed via the UNIX

-
-

file stfile) and the name of an icon class description.
I -

An icon class description is a set of rules describing the
-

-
‘

~~1
—- -

- -

~~~T~~~~~~ ’ 5- - 5 - 5 -
:;—-5— — ——-5- -5- ---~~ ---_- -5— 5-— ,—--5— -------- — ~~~~~~~~~~~~~~~ -~~~~ — ———~~~~- —5--- —5- -- -5---— —



‘-—-- 5 -  - -- --5 ---- . -5-5— --- --—-- -----—5-5--5-5-5-----—- - -,-- _ - . -----—---5. _ 5-.——-—-—-5— ----5-- -_-- --5- -  ---5---- -~~~-- -- —-5--—-

[ - 
SOMS Quarterly Technical Report Page —55—
GRAPH ICAL VIEWS OF SYMBOLIC L)ATA Section 14

appearance of an icon as a function of’ the contents of its

entity tuple.

When association processing is complete , the association

LI processor will set its AP—done flag . When consulted by

the SQUEL interpreter , this flag will be reset , and the

- 
~~~ icon— id s in icons.SDMS will be read into the asociation

map relation. At this point , the association map entry

which signals the unavailability of icon-’id s for this

relation will be removed .

14.2 DISPLAY COMMAND AND ERASE COMMAND

H The SQUEL display command differs from the associate corn—

mand In two important ways : an optional qualification

- allows the selection of specific tuples , and the graphical

view of the relation is static rather than dynamic . The

static nature of display icons means that they are never

automatically erased from the GDS. Because of this ,

F
- displays are named by the user for subsequent use in the

SQUEL. erase command .

In its impl ementation , the display command utilize s the

same icon generating mechanism s as the associate command .
‘

. GDS integr ity ma intenance is bypassed for the se icons by

II

_ _ _ _ _ _ _
~~~~~~~~~~ __  J



- - — 
——5 -—  - -—5- —-5- ____________

t L 

- 

SDMS Quarterly Techni:;1 Report Page -56- 1GRAPHICAL VIEWS OF SYMBOLIC -DATA Section 14

saving the display icon— id s in the display map rather than

in the association map. The display map relate s display

names to icon— ids.

The SQUEL erase command take s a display name as its argu—

- ment. When recognized by the SQUEL interpreter , an

Integrity Maintenan ce Daemon (IMD) erase request is made

for each icon mapped to the specified display name in the

display map. An IMD erase request causes GDS integrity

maintenance to erase the specified icon (see Section 14.3

below) .

4.3 GDS INTEGRITY MAINTENANC E

Graphical Data Space (GDS) integrity maintenance deal s

with the problem s of maintaining a faithful representation

of the symbolic database in the GDS. Specifically, the

appearance of each entity icon must change as its entity

L tuple changes. Addition or deletion of tuples to an asso-’

[ 
ciated relation must af fect  addition or deletion of entity

icons in the GDS.

GDS integrity maintenance involves three main subtasks :

— identification of symbolic database operations which

may affect GDS integrity,

•

~

i

~ 

‘

~~~~~~~~~~~~~~~~~~~~

--

~~~~~~ ~~~~~~ - -



—5--—-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—-- -----------.----- - - - ---- -- --- 5--

~~
•1

SDMS Quarterly Technical Report Page —57—
GR A PHICAL VIEW S OF SY MBOLIC DATA Section II

— background control of integrity maintenance opera-

t ions, and

— manipulation of the graphical data space.

Identification of relevant symbolic database operations is

done by the SQUEL interpreter , through which all symbolic

database interactions pass. Identifications of Ingres

append , repl ace , delete , and destroy commands which apply

to any associated relation causes (queued if necessary)

r eques t s  to be mad e to the Integri~.y Maintenance Daemon

(1Mb). IMD requests are of three types: create icon ,

recreate icon , and erase icon. The form of an 1Mb request

is a message packe t in the IMD request queue .

Each IMD request packet contains all the data necessary

for the integrity maintenan ce daemon to direct the com ple—

tion of one IMD request . Queuing of these requests allows

background operation of most integrity maintenace process-

ing . To the user , GDS integrity maintenance appears to

proceed concurrently with all other SDMS operations ,

including subsequent symbolic database interactions.

Manipulation of the GDS is through icon creation — pictur e

construction , a process which is capable of constructing

and erasin g icons.

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - -

-5----- —-5- --5— 5-- —5--——— —--5-— -5—--~~~~~~ -.L~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~ -


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— — --5- --’

SDMS Quarterly Technical Report Page — 58—
GRAPHICAL VIEWS OF SYMBOLIC DA TA Section 14

Li
4. 3 .1 Impl ementation overview

The association map relation contains a list of all asso— 
-

H d ated relations. SQUEL add , replace , delete , and destroy

commands specifying any of these relations affects GDS

integrity maintenance , and causes the SQUEL interpreter to

issue IMD requests.

The addition of a tuple to an associated relation requires

the addition of an entr y to the associat ion map relation.

This entry maps the new tuple ’s tup le— id to its icon—id .

New tuples ’ icon— id s are provid ed by the icon manager . A

create icon request is sent to the IMD. Create icon

request packets contain: an icon—id , the name of the rela-

tion , and the contents of the new tuple. These data are

utilized by the IMD in formulating the icon creation —

picture construction invoking parameters which will cause

the construction of a new entity icon.

Replacing a tuple of an associated relation produces an

IMD recreate request similar in format to that of the

create request . In response to a recreate request , how-

ever , two invocations of icon creation — picture construe—

tion are made by the integrity maintenance daemon. The

first invocation erases the old entity icon , the second

invocation recreates it as specified by the tuple ’s new

contents. Deleting a tuple of an associated relation or

I 

- [I
11

- ----- . 5- - - .  ~~

-

- . 

-

_
w ~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ -5 -—


—-

SDMS Quarterly Technical Re port Page — 59—
GRAPH ICAL VIEWS OF SYMBOLIC DA TA

-
Section 14

destroying an associated relation results in IMD erase

requests from the SQUEL interpreter . Erase request pack-

ets contain only the icon ’s icon—id . In response to an

erase request , the IMD directs integrity maintenance —

pictur e construction to erase the entity icon.

Concurrent association processesing , and GDS integrity

maintenance initiated by a replace , delete , or destroy

operation on the same relation , is not possible. Recreate

and erase IMD request packets include the entity icon ’s

icon— id which is found in the association map relation.

As icon— id s are inserted into the map onl y after a suc-

cessful association , recreate and erase IMD requests can—

not be mad e until the association is complete . In the se

situations , processing of the repl ace , delete , or destroy

command will be suspended until the association is com-~

plete and the icon—id data is avai lable.

Fl

-
- - - 5

~~

. -~~~V . 5- - - _ 5-
~~

—.~~
;-

1.~
— -.5---- — — -5 -5- — ~~ - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —5-- - -- —

1

SDMS Quarterly Technical Report Page —60—
Appendix A

H
APPENDIX A

-

NAME
template icon

SYNOPSIS
-TEMPLATE ICON num ber

DESCRIPTIO N
Selects the template icon from the templ ate image
plane.

ri
~~~~~~~~~~~~~ _ _ _



- -  - — - - ~~~~~~~~~~~~~~~~~ - - ------- - - - - - ----— -- -

SDMS Quarterly Technical Re port Page — 61—
— Appendix A

H
NAME

attribute region statement — de f ines an attr ibute

region.

SYNOPSIS
ATTRIBUTE REGION attribute name FROM (xl ,yl) TO
(x2,y2) 

—

DESCRIPTIO N
Defines an attribute region and specifies its posi-
tion within the icon. The region will display the
value of the specified attribute .

DEFINITIONS
<attribute> :::

ATTRIBUTE REGION<attribute _ name>
FROM (<arith_expr > ,<arith_expr> )
TO (<arith_expr > ,<arith_expr>)

<attribute name> ::~ <identif ier>

EXA M PLE
/* attribute region for persons phone *1

attribute region r .phone  from (0 , 0) to (50,20)

SEE ALSO
general (icdl), plane (icdl), example (icdl)

DIAGNOSTICS

BUGS

1
1

- H

- 5 - A
~~’~~ ~~~~~~~~~~~~~~~~~~~~~~~ -

-5--——- -5:— ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I
SDMS Quarterly Technical Report Page —62—

A p p e n d i x  A

NAME -
~~~~

- . - imag e plane statement — statement to describe one
plane of an icon.

SYNOPSIS -

- IMAGE PLANE planet plane_ stmts END

DESCRIPT ION
The image plane statement fully describes one plane
of an icon for an icon class description . The planet
states which pl ane in the I—Space is intended . The
plane stmts further modify this picture. They include £
text , coloring , drawing pictures , etc .

The icon used for a plane should be one plane deep.
• If the icon covers more than one plane , o n l y the

top— most plane is used .

DEFINITIONS
<pl ane> ::: IMAGE PLANE (pl anet> <icon_ id> <plane_stmts> END

<planet> ::: <arith expr > ;

<plane_stmts> ::= <pl ane_ stmt>
<p l arze_ stmt> (plane_ stmts>

(plane_stmt> ::~ <attribute region>

EXAMPLE
see exarnple (icdl) :1

SEE ALSO
general (icdl), icon(icdl), exam ple (icdl)

5-—
—

~~~~~~~~~~ 

- 

~~~~~~~~~~~~~ ~: ~
-— -

~~~~~~~ ———‘-----—--- - -—--—--—- -~~~~~~~~ -—~~~~~~ -— _
_ .~~~~~~ -

5-——— --— —
~ 

__ fl ._ -_ -—--5--_--~--
_ _ ,.—--



— —5--- 5-—— -- ~~~~——5- -. —-—--5- —- 5-— — ---- --- ---—--5--—---- --- - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- 5----—-- ”---------- - ——-U

*

F SDMS Quarterly Technical Re port Page -‘63—
Appendix A

NAME
position — defines target position for icon.

SY NOPS IS
POSITION (x ,y)

DESCRIPT ION
Defines the target position for each icon . The target
position is the position in the I—Space where SDMS
will attempt to place the created icon. This position
is in the user ’s coordinates for the I—space. If it
cannot pl ace it at the target position , it attempts
to find a position close by. if  the icon cannot f i t
anywhere , an error occurs.

DEFINITIONS
<position> ::: POSITION (<arith ,expr > ,(arith_expr>)

EX AM PLE
/~ set icon origin to be I—Space origin

(taken from example (icdl)) ‘1

position (0,0)

SEE ALS O
general(icdl), icon class (icdl), example(icdl)

DIAGNOSTICS

BUGS

-
i

-
~~~~ 

~~~~~~~~~ —--5-- --5-- . ——--— — — - —5- 
~~
—-

~~~~~~~
— -

~~~~~~~~~~~~~~
-—

~~~-~-z~_ _ _  -~~~~ - — - -~~-—


1”
SDMS Quarterly Technical Report Page ~611~

Appendix A

NAME
color statement — performs color filling on a region
of the icon.

• SYNOPSIS -

COLOR OF RE G ION region_ number IS color

DESCRIPTION
The specified portion of the template will be filled
with the specified color . The regions of a template
are defined when the template is created by flooding
each of them with a different color . The
region_ number is the same as the index of the color
used to flood that region. In this was arbitrar y
shapes can be colored .

bE FIN IT IONS
<color> : := COLOR OF REGION<arith expr > ,

<color_ex pr>

EXAMPLE
COLOR OF REGION 2 IS green

SEE ALSO

DIAGNOS TI CS

BUGS

p V

L

[1
p — ~~~~

—
— U~

—

r fl~~~~~~~~~~~~ i-5: _

SDMS Quarterly Technical Report Page — 65—
A p p e n d i x A

NAME
max imum size — defines the maximum size of the icon .

SYNOPSIS
MAXIMUM SIZE IS (width ,height)

DESCRIPTION
Defines the maximum size of the icons generated by
the icon class. If the generated icon is greater
than this size , scaling takes place automatically to
reduc e it to the max imum size .

DEFINITIONS
<maxim um> ::= MAXIMUM ((arith_ex pr> ,(arith_ex pr>) ;

EXAM PLE

maximum (+100 ,+120)

SEE ALSO

- 5-
- - , —

~~ - —- - - 5 - , -

I L -~~,

_____ --5—— —5-- -5
- -•:5-~_-.n ~~~~~~~~~~~~~~~—:-i ~~~~~~ -


~~~~~
---

~~~~~~~--- —-- r_ ~~~~~~~~~~~~--- _-

-

SDMS Quarterly Technical Report Page —66—
Appendix A

I i~~

NAME
scale statement — scales the icon within the limits

- of the icon class definitions.
p

SYNOPSIS -

SCALE IS s

DESCRIPTIO N
Scales the icon on the plane being described . If s>1
then the icon increase s in size . If s<0 , an e r ror
occurs. Otherwi se , the icon decrease s in size . In
any case , the scaling is limited to be between the
minimum and max imum sizes of the icon.

DEFINITIONS
<scale> ::: SCALE BY <arith_ex pr>

EXAMPLE
/‘ double the icon size ‘1

scale by 2 :

SEE ALSO

U

‘
5-

.
-

-

- -

- --—~~~-“~
--

~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..P ~- - - - - - ~:-~r -  —
—

SDMS Quarterly Technical Re port Page -‘67—
Appendix B

APPE NDIX B

B.1 DO_ IMAGE Subroutines

B.1.1 DO_SCREEN()

Calculate the new screen length and height as

new_ slen (SCRN _LEN / new_ scale) — 32

new_ slen = SCRN _HT / new_ scale; -

red uce either as necessary to make it fit the iplane.

Calculate an xdelta and ydelta as half the difference

between new and old dimens ions , positive if the d imension

shrank (inbound case) .

Calculate the new upper left corner of the screen as the
— old corner plus the deltas in both x and y. If this point

lies outside the current sl_ boundary, shift it down

and/or right until it is safe .

Calculate the new lower right scree n corner as the upper
p

left plus the new length or he ight , minus 1. If this lies

ii -

r —

1_

—u
-I-’
.

~~~~~~~~~~~~~~~~~~~~~ -— —~~~ 

- 
-5 ~~~~~~~~~~~~~~~~~~~~ 

-w -— 
~~~~~~~~~~~~~~~~~~~~~~ -~~~~~


_ _ _ _ _ _

-
~~~~~~~~~ - --5 - . - -5- -- -

1. SUMS Quarterly Technical Report Page -6 8- ‘

Appendix B

I V outside the current si_corner , shift up/left to make it

fit. If that moves the upper left corner out , the current

[1 buffer will not hold the new image; return — 1.

- 
Otherwi se , copy screen bounds , dimens ions , and scale in to

common; call set_current() to send these new parameters to

the display; return 0;

II 
p

- -

U

1_I

1.

1. - 
- 

- 

.

Li -

~ 

i — — .



f 

- _ _  

--

SDNS Quarterly Technical Report Page —69—
Appendix B

8.1.2 SET_DIMENSIONS()

N Set new sb d imensions from the appropriate array in

navdat.c , indexed by new_ scale.

Select the new_ map and dimensions ( cols and rows ) accord—

- ing to the value of new_ scale; restrict cols and rows to

be less than or equal to the tile dimensions of the

current iplane .

Compute new eblen and new cbht as cols and rows times the

tile dimension , but restrict them to be less than or equal

the corresponding iplane pixel dimension.

Copy from current into new_ sblx , _ sbty, _cb]x , and _cbty.

1 :  All new_ variables are now initialized . Return.H:

-



SDMS Quarterly Technical Report Page — 70-.
Appendix B

B.1.3 DO_CBUF()

Compute x and y deltas as half the difference bet.ween new

and current cb_ dimensions , positive for the inbound case .

Compute the new upper left bounds as the current value

plus the appropr iate delta , truncated to a tile boundary;

reset negative value s to 0; if the new value is greater

than the new upper—left cor ner of sbuf ( equal to the old

one if we haven ’t calculated a new yet) , shift up/left

until it is valid . -

Compute the new lower right bounds as the  new upper l e f t

plus the new dimensions minus one . If this lies ou t s ide

the iplane by more than a tile dimension , shift all bounds

left/up until valid . If it lies outside the new Sb lower

right corner , shift down/right until valid . If this leaves

the upper left corner inside the Sb bounds , abor t  —— cb

dimensions have not been cho se n large enough for this

scale.

If inbound , call copy dn with the new_ma p , the number of

rows to skip at the top of the map,~ and the number of

columns to skip at the left of the map. (These are corn—

puted as new_ bound/TILE_dimension — current.bound

/ T ILE _dimension.) Copy_dn does not have an error exit .

Return.

H- 
- 5-- -

- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- _ - -
- - - 5

~~~~~ TT~~~~

SDMS Quarterly Technical Report Page —7 1—
Appendix B

~~~~ DO_SBUF()

Compute x and y deltas as half the difference between

new_ sb dimensions and those in current; positive value s

for the inbound case .

Compute the new upper left bounds as the current bounds

plus the appropriate delta , truncated to the minimum feed

width (16 across , ~l down). Shift down/right while out-

side the new_ cb upper left bounds (equal the current

va lue s when inbound , because zdo_cbuf hasn ’t been called

yet) . Shift left/up while inside the new (= current) s_

upper left corner . No need to test against cb again ,

because tile boundaries are multiples of the sb there—

ments , and s is nested with cb.

Compute the new_ eb lower right bounds as upper left plus

the new dimension minus 1. If this leaves new Sb lower

right outside cb , set it to cb. If sb is inside s lowe r

r ight , shift right/down until valid . If this invalidate s

L the upper left corner , abort —— sb dimensions have been

chosen wrong for this scale.

Return.

-
-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

5 - 5 -

~~~~~~~~~~~~~~~~~:,~~ ~~~~~~~~~ - 5 - - ~
- ;

----——-5-—-—-
-~ ~~~

SDMS Quarterly Technical Report Page —72—
Appendix B

- (.1
i

B.1.5 ZDO_SLBUF()

In tur n for the top, bot tom , l e f t , and right sides; -

If new_sl lies outside new_ sb , set i t to new_ sb; else If

strictly inside sb , feed the rectangle defined by the

U three outer sb bounds and 1 outside the inner $1 bound .

Reset the si bound to the correspo nding Sb bound .

[1 -
-

‘

~ I
-—5--

~

- - - -

~

-

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 
U



- —-5- -~~ 5 --- - --— 

SUMS Quarterly Technical Re port Page — 7 3—

Appendix B

B.1. 6 COPY _DN ( new_map, tskip, lskip)

A rectangle of tiles contained in the current tile map is

to be copied into the new map, filling it. The remainder

of the old map is defined by tskip rows on the top,

(old_rows — new_rows — tskip) rows on the bottom , and in

each of the intervening , shared rows , lskip tiles on the

left , and (old_cols — new_cols — iskip) tiles on the

right . The tiles in this remainder have their buffers

returned to the buffer pool and their t_ blocks cleared .

Copying tiles is accomplished by swapping the pointers in

correspo nding locations in the two maps .

Compute rskip and bskip.

For tskip rows :1

for old_cols tiles
add tile ’s t_buffad to list to be returned

- - fill t_ block with — 1 ‘5

For new_ rows rows
for iskip tiles

flush tile as— above
for new_ cois tiles

swap pointers from old and new maps
for rskip tiles

- r 
flush tile as above

For b skip rows
for old_cols t i l e s

f l u s h  t i l e  as above

call free buf(old_ s ize — new size ,
-‘1, 7* don ’t need to swap the se into an
l ist of buffer addresse s , I’ active map, as for pain t;
same lis t) /* therefore also don ’t car e what the

I’ tile— id list says

- ~~~~~
-
~~~~--~~~~~~~~~~~ 

—- -
~~~~~~~ ~~~~~~~~~~~~~~~ ~~~

. -- .- -
~~~~~~~~~~~~~~~~~~~~~~~ :~~~~~~~~~~~~~~~~~~~~~~

- T -

11 SDMS Quarterly Technical Report Page —74-.
- 5-

-
Appendix B

B.1.7 COPY_UP(new_ma p , tskip, lskip)

Like copy_dn , but this time the source is smaller than the

destination. So instead of flushing tiles , we allocate

new ones: buffers must be requested from the buffer

manager ; tile_ ids computed , and i—plane & status filled

in each new block , and diskio queued for that block.

Upper left tile id of dest is com puted as upper left tile

id of source , minus lskip, minus (tskip ‘ ip_ xtiles).

Number of buffers to request is computed as the difference

of the two maps ’ sizes; if’ the buffer manager cannot sup-.

ply them , copy_up fails (returns —1). Rskip and bskip are

computed as for copy_dn.

For tskip rows
for newcols tiles

m i t block: t_ id base id -~~ column
t_ i—plane current i—plane
t status TBUSY
t bufad = next from list

buffer manager retur ned
get tile(t block)

add ip_ xtiles to base id

For old_ rows rows
for lskip tiles

m i t _block as above
for old cols tiles

swa3 pointers from old and new maps
for rskip tiles

m i t _block

For bsk ip rows
for new cols tiles

iniE_ block

- I i ~
-

L.
- —-- ___ .

- - - — - -- ‘5- --
-

- - - - - - - - - -

-5 _- -5- - - - 5 - — - - - 5 - 5 - -5—- ,

SDMS Quarterly Technical Report Page ..75 .
Appendix B

8.2 Zoom_ agenda states

ZREADY: No setup processing has been accompl ished . The
first step is to find if a destination is to be
use d , and if so , which one .

call find_destO; dispa tch on its return code:

FAIL: can ’t go that way from here. leave
agenda untouched; return.

SUCCESS: destination pointer refers to a val id
destination , set agenda to ZGETIS ;
return.

PROCE SS: d e s t i n a t i o n is a process rather than
a location , set agenda to ZSPAWN;
return.

ZGETIS: call get is with the I—Space id in the regnant
destinati~ n struct. Returns are:

FAIL: no such I—Space. set agenda to
Z R EADY ; complain; return.

SLOW SUCCESS: a new I—Space descriptor was
read from disk. set agenda to
ZGETIP; return.

FAST SUCCESS: I—Space descriptor found without
i/o.

set agenda to ZGETI P; retr y
switch. - j

ZGETIP: call get ip with the level number in the desti—
nation. Returns -are:

FAIL: no such i—pl ane. set agend a to
ZREADY ; complain; return.

SLOW SUCCESS: a new i—plane descriptor was
read from disk. set agenda to ZNEWS—
CREEN; return.

FAST SUCCESS: i—plane descriptor found without
i/o. set agenda to ZNEWSCREEN; retr y
switch.

.5-- - -

- -5- - - -5- ~~— --5— - - - -5— -—

— --5-,

J SDMS Quarterly Technical Report Page -.76—
Appendix B

ZNEWSCREEN: if destination pointer refers to static
struc t , call new_corner to figur e the universal
coordinate s of the upper left corner of the des—
t ination.

if (inbound and scale < LI) or (outbound and
scale > 2) buffer space isn ’t read y yet; return
immediately.

call news _ screen with left x , top y , and desired
scale; returns are:

FAIL: screen buffer space not available.
set agenda to ZWAIT ; return.

SUCCESS: the “next” struct has its var ious
display parameters set correctly,
including an available buffer in the
display. set agenda to ZNEWLCB;
retr y switch.

ZNEWLCB: call new lcb . returns:

FAIL: core buffer space not available;
have to wait for more: set agenda to

- - ZWAIT; return.

SUCCESS: the “next” struct has its core buffer
- - parameters correctly set , including

reservat ion of suff icient pages of’
buffer space. set agenda to ZNAVAID;
retry switch.

ZNAVA ID: if new and old I—Space id’ s e q u a l , set agenda to
ZLOAD; retr y switch.
else call set_ navaid for next I—Space; returns:

FAIL: set agenda ZWAIT ; retr y switch.

SUCCESS: set agenda to ZLOAD; return

ZWA1T: if current scale not yet at extreme , return;
call goto_ image with the destination values.
re turns :

FAIL: call restor current; set agenda to
Z R E A D Y

SUCCESS: set agenda to ZREADY ; retur n (you ’re
in the desti nation) .

- - - - -. r -~~7 h—— ~~~~~~~~~~~~~~~
- - - - -

-5 -5 --5 — -~~~~~~~~~~~~~~~ -::~--- •‘---‘- ~~ ~~~~~~~~ — 5-—~~~~~~.—- ~-----5 -5 5-4

Ii SUMS Quarterly Technical Report Page —77—
Appendix B

ZLOAD: call load_ lcb with the tile Id stored in
next.tileO . set agenda to ZFEED1; return;

ZFEED1: call feed_ image for the main display, nex t—
structur e , an d boun d s of the screen in the next
structure. call FEED_BND to set the bounds of
the loaded area the same as the bounds of’ the
screen . (Neither of these actually accom pl ishes
that effect; it simpl y queue s the appropriate
request.) Save the end of this sequence of
requests. set agenda to ZFEED2; return

ZFEED2 : if ’ requests from ZFEED 1 rem a in in the queue , do
2 of them . if the feed queue has been emptied as
far as the end of the sequence generated by
ZFEED 1 , set agenda to ZCOMMIT. return.

ZCOMMIT: if current scale not at the extreme or zoom
clock > 0, return, call swap_ state ; call
set current; call flush state on the next struc—
tur~~; set agenda to ZFE~D3; return

ZFEED3: call feed_ image to fill in the margins above ,
be low , l e f t , and right of the screen in the
screen buffer ; call FEED_BND to move the load ed
bounds appropriately , set agenda to ZREADY;
return.

I I~i

U

j- 11
5- -- -5-5- -5- - - -

_ _ -
~~~r~~-!,t- — -



I

SDMS Quarterly Technical Report Page —78—
Re ferences

- -

Re ferences

(HELD STONEBRAKE R W ONG )
Held , G.D. ; Stonebraker , M.R. ; Wong, E., “IN GRES —

— A relational data base system ” , AFIPS Proceedings ,
Volume 44.

(HEROT et aid
Hero t , C.F.; Kramlich , D . ;  Can ing , R.; Friedell ,
M.; and Farrell , J., “Quarterly Re search and
Development Technical Report , Spatial Data Manage—
men t System ” , Computer Corporation of Amer ica , 575
Technology Square , Cambridge , Mass., 021 39
(December 1978).

(KN (JTH]
Knu th , Donald E., The Art of’ Computer Programming,
Vo lumn 3, “Sortirig i~id~~ia~~hTng1’, AddTson~eWes~ley,Menlo Park , California , pg. 1~29 (1975).

-
-:
,-

~ - -~
_~,--

‘i
[ _

~I 

- 
-

- - —~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~ - 
- 

I


